Model Predictive Control and Optimization for Papermaking Processes

نویسندگان

  • Danlei Chu
  • Michael Forbes
  • Johan Backström
  • Cristian Gheorghe
  • Stephen Chu
چکیده

Papermaking is a large-scale two-dimensional process. It has to be monitored and controlled continuously in order to ensure that the qualities of paper products stay within their specifications. There are two types of control problems involved in papermaking processes: machine directional (MD) control and cross directional (CD) control. Machine direction refers to the direction in which paper sheet travels and cross direction refers to the direction perpendicular to machine direction. The objectives of MD control and CD control are to minimize the variation of the sheet quality measurements in machine direction and cross direction, respectively. This chapter considers the design and applications of model predictive control (MPC) for papermaking MD and CD processes. MPC, also known as moving horizon control (MHC), originated in the late seventies and has developed considerably in the past two decades (Bemporad and Morari 2004; Froisy 1994; Garcia et al. 1998; Morari & Lee 1999; Rawlings 1999; Chu 2006). It can explicitly incorporate the process’ physical constraints in the controller design and formulate the controller design problem into an optimization problem. MPC has become the most widely accepted advanced control scheme in industries. There are over 3000 commercial MPC implementations in different areas, including petro-chemicals, food processing, automotives, aerospace, and pulp and paper (Qin and Badgwell 2000; Qin and Badgwell 2003). Honeywell introduced MPC for MD controls in 1994; this is likely the first time MPC technology was applied to MD controls (Backström and Baker, 2008). Increasingly, paper producers are adopting MPC as a standard approach for advanced MD controls. MD control of paper machines requires regulation of a number of quality variables, such as paper dry weight, moisture, ash content, caliper, etc. All of these variables may be coupled to the process manipulated variables (MV’s), including thick stock flow, steam section pressures, filler flow, machine speed, and disturbance variables (DV’s) such as slice lip adjustments, thick stock consistency, broke recycle, and others. Paper machine MD control is truly a multivariable control problem. In addition to regulation of the quality variables during normal operation, a modern advanced control system for a paper machine may be expected to provide dynamic economic optimization on the machine to reduce energy costs and eliminate waste of raw materials. For machines that produce more than one grade of paper, it is desired to have an automatic grade change feature that will create and track controlled variable (CV) and MV

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

Decentralized Advanced Model Predictive Controller of Fluidized-Bed for Polymerization Process

The control of fluidized-bed operations processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. There are varieties of problems in chemical engineering that can be formulated as NonLinear Programming (NLPs). The quality of the developed solution significantly affects the performa...

متن کامل

Designing a novel structure of explicit model predictive control with application in a buck converter system

This paper proposes a novel structure of model predictive control algorithm for piecewise affine systems as a particular class of hybrid systems. Due to the time consuming and computational complexity of online optimization problem in MPC algorithm, the explicit form of MPC which is called Explicit MPC (EMPC) is applied in order to control of buck converter. Since the EMPC solves the optimizati...

متن کامل

Constrained Model Predictive Control of Low-power Industrial Gas Turbine

Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...

متن کامل

Adaptive Simplified Model Predictive Control with Tuning Considerations

Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012